Title: | Tools for Analyzing Sequencing Data with Unique Molecular Identifiers |
---|---|
Description: | Tools for analyzing sequencing data containing unique molecular identifiers generated by 'UMIErrorCorrect' (<https://github.com/stahlberggroup/umierrorcorrect>). |
Authors: | Stefan Filges [aut, cre] |
Maintainer: | Stefan Filges <[email protected]> |
License: | GPL-3 |
Version: | 1.0.0 |
Built: | 2025-03-13 05:48:44 UTC |
Source: | https://github.com/sfilges/umianalyzer |
Add metaData
addMetaData(object, attributeName, attributeValue)
addMetaData(object, attributeName, attributeValue)
object |
R object to which meta data should be added |
attributeName |
Name of the meta data attribute. |
attributeValue |
Meta data to be saved. |
A UMIexperiment object
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer") simsen <- addMetaData(simsen,'metaData',metaData)
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer") simsen <- addMetaData(simsen,'metaData',metaData)
Add UMI sample to an existing experiment object
addUmiSample(object, sampleName, sampleDir, clearData = FALSE)
addUmiSample(object, sampleName, sampleDir, clearData = FALSE)
object |
UMIexperiment object |
sampleName |
Name of new sample |
sampleDir |
Directory to new sample |
clearData |
Should other data in UMIexperiment be cleared |
A UMIexperiment object
Generates a heatmap of mutations with sample clustering using pheatmap.
AmpliconHeatmap( object, filter.name = "default", cut.off = 5, left.side = "columns", amplicons = NULL, samples = NULL, abs.count = FALSE, font.size = 10 )
AmpliconHeatmap( object, filter.name = "default", cut.off = 5, left.side = "columns", amplicons = NULL, samples = NULL, abs.count = FALSE, font.size = 10 )
object |
Requires a UMI sample or UMI experiment object |
filter.name |
Name of the filter to be plotted. |
cut.off |
How many variant reads are necessary to consider a variant above background? Default is 5 reads. |
left.side |
Show assays or sample on the left side of the heatmap. Default is assays |
amplicons |
(Optional) character vector of amplicons to be plotted. |
samples |
(Optional) character vector of samples to be plotted. |
abs.count |
Logical. Should absolute counts be used instead of frequencies? |
font.size |
Font size to use for sample labels |
A graphics object
## Not run: library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen) hmap <- AmpliconHeatmap(simsen) ## End(Not run)
## Not run: library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen) hmap <- AmpliconHeatmap(simsen) ## End(Not run)
Plots variant allele frequencies or alternate allele counts for chosen samples and assays.
AmpliconPlot( object, filter.name = "default", cut.off = 5, min.count = 0, min.vaf = 0, amplicons = NULL, samples = NULL, abs.count = FALSE, y_min = 0, y_max = NULL, theme = "classic", option = "default", direction = "default", plot.text = FALSE, plot.ref = TRUE, stack.plot = FALSE, classic.plot = FALSE, fdr = 0.05, font.size = 6, angle = 45, use.caller = FALSE, use.plotly = TRUE )
AmpliconPlot( object, filter.name = "default", cut.off = 5, min.count = 0, min.vaf = 0, amplicons = NULL, samples = NULL, abs.count = FALSE, y_min = 0, y_max = NULL, theme = "classic", option = "default", direction = "default", plot.text = FALSE, plot.ref = TRUE, stack.plot = FALSE, classic.plot = FALSE, fdr = 0.05, font.size = 6, angle = 45, use.caller = FALSE, use.plotly = TRUE )
object |
Requires a UMI sample or UMI experiment object |
filter.name |
Name of the filter to be plotted. |
cut.off |
How many variant reads are necessary to consider a variant above background? Default is 5 reads. |
min.count |
Minimum variants counts to plot, default is 0. |
min.vaf |
Minimum variants allele frequency to plot, default is 0. |
amplicons |
(Optional) character vector of amplicons to be plotted. |
samples |
(Optional) character vector of samples to be plotted. |
abs.count |
Should absolute counts be plotted instead of frequencies? Default is FALSE. |
y_min |
Minimum y-axis value, default is 0 |
y_max |
Maximum y-axis value, default is NULL (autoscale) |
theme |
Plotting theme to use, default is classic. |
option |
Color palette to use. |
direction |
Orientation of the color palette. |
plot.text |
Should non-references bases be indicated above the bar? |
plot.ref |
If true show reference base instead of position on x-axis. |
stack.plot |
Show all variant alleles in a stacked bar plot. |
classic.plot |
Show classical debarcer amplicon plot with raw error. |
fdr |
False-discovery-rate cut-off for variants. |
font.size |
Font size |
angle |
Font angle |
use.caller |
Should data from variant caller be used? Default is FALSE |
use.plotly |
Should plotly be used instead of the regular ggplot device? Default is TRUE |
A UMIexperiment object containing a ggplot object with the amplicon plot.
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen) amplicon_plot <- AmpliconPlot(simsen)
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen) amplicon_plot <- AmpliconPlot(simsen)
Generate histograms for the frequency of barcode family depths.
BarcodeFamilyHistogram( object, xMin = 0, xMax = 100, samples = NULL, option = "viridis", direction = 1, theme = "classic" )
BarcodeFamilyHistogram( object, xMin = 0, xMax = 100, samples = NULL, option = "viridis", direction = 1, theme = "classic" )
object |
Requires a UMI sample or UMI experiment object |
xMin |
Minimum consensus family size to plot, default is 0. |
xMax |
Maximum consensus family size to plot. Default is 100. |
samples |
List of samples to be shown. |
option |
Color scheme to use |
direction |
If using viridis colors sets the orientation of color scale. |
theme |
ggplot theme to use. Defaults to classic. |
A ggplot object
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') simsen <- createUmiExperiment(main, importBam = TRUE) barcode_dist <- BarcodeFamilyHistogram(simsen)
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') simsen <- createUmiExperiment(main, importBam = TRUE) barcode_dist <- BarcodeFamilyHistogram(simsen)
Code was obtained from VGAM package function VGAM::rbetabinom.ab. The VGAM package is available under the GPL-3 license and maintained by Thomas Yee <t.yee at auckland.ac.nz>. Source code of the function is identical to rbetabinom.ab, but the function name was changed to beta_binom.
beta_binom(n, size, shape1, shape2, limit.prob = 0.5, .dontuse.prob = NULL)
beta_binom(n, size, shape1, shape2, limit.prob = 0.5, .dontuse.prob = NULL)
n |
n |
size |
size |
shape1 |
alpha |
shape2 |
beta |
limit.prob |
0.5 |
.dontuse.prob |
NULL |
Numeric
Yee TW (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. Springer, New York, USA.
beta_binom(10,5, 0.5, 1) beta_binom(10,2, 0.5, 1)
beta_binom(10,5, 0.5, 1) beta_binom(10,2, 0.5, 1)
Calculate variant p-values using permutation-based testing. A prior is fitted to model the background error using maximum likelihood estimation of a beta distribution. The maximum likelihood estimate of the beta distribution is then used to define the shape of a beta-binomial distribution used to estimate variant P-Values. This can be interpreted as a probability for a variant to not have arisen by chance.
callVariants(object, minDepth = 3, minCoverage = 100, computePrior = FALSE)
callVariants(object, minDepth = 3, minCoverage = 100, computePrior = FALSE)
object |
A UMIErrorCorrect object. |
minDepth |
Minimum consensus depth required default is 3 |
minCoverage |
Minimum Coverage to use, default is 100 reads. |
computePrior |
Should a new distribution be derived from data? Default is FALSE. |
Object containing raw and FDR-adjusted P-Values
filterVariants
on how to filter variants.
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- filterUmiObject(simsen) simsen <- callVariants(simsen, computePrior = FALSE)
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- filterUmiObject(simsen) simsen <- callVariants(simsen, computePrior = FALSE)
Method for creating a UMI experiment object
createUmiExperiment( mainDir, experimentName = NULL, sampleNames = NULL, importBam = FALSE, as.shiny = FALSE )
createUmiExperiment( mainDir, experimentName = NULL, sampleNames = NULL, importBam = FALSE, as.shiny = FALSE )
mainDir |
Main experiment directory |
experimentName |
Name of the experiment |
sampleNames |
List of sample names. Can be either NULL or list. If NULL all subdirectories of mainDir will be searched. |
importBam |
Logical. Should bam files be imported on creation? Default is False. |
as.shiny |
Set to TRUE if run within a shiny::withProgress environment |
An object of class UMIexperiment
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) exp1 <- createUmiExperiment(experimentName = 'exp1',mainDir = main,sampleNames = samples)
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) exp1 <- createUmiExperiment(experimentName = 'exp1',mainDir = main,sampleNames = samples)
Method for creating a UMI experiment object
createUMIexperiment_Debarcer(experiment.name, main.dir, dir.names)
createUMIexperiment_Debarcer(experiment.name, main.dir, dir.names)
experiment.name |
Name of the experiment |
main.dir |
Main experiment directory |
dir.names |
List of sample names |
A UMIexperiment object
Method for creating a UMI sample from UMIErrorCorrect output.
createUmiSample(sampleName, sampleDir, importBam = FALSE)
createUmiSample(sampleName, sampleDir, importBam = FALSE)
sampleName |
UMI sample object name |
sampleDir |
Path to UMI sample folders. Must be a folder generated by UMIErrorCorrect |
importBam |
Logical. Should BAM files be imported at object initialization? Default is False. |
An object of class UMIsample
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) s1 <- createUmiSample('s1',sampleDir = paste(main,"/",samples[1],sep=""))
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) s1 <- createUmiSample('s1',sampleDir = paste(main,"/",samples[1],sep=""))
Method for creating a UMIsample object
createUMIsample_Debarcer(sample.name, sample.dir, cons = "10")
createUMIsample_Debarcer(sample.name, sample.dir, cons = "10")
sample.name |
UMI sample object name |
sample.dir |
Path to UMI sample |
cons |
Consensus depth. Needs to be string; default is 10. |
A UMIsample object
Function for downloading a template file containing metadata.
download_template(object)
download_template(object)
object |
A UMIexperiment object |
A tibble containing a metadata template
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) download_template(simsen)
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) download_template(simsen)
Method for filtering UMIexperiment and sample objects
filterUmiObject( object, name = "default", minDepth = 3, minCoverage = 100, minFreq = 0, minCount = 0 )
filterUmiObject( object, name = "default", minDepth = 3, minCoverage = 100, minFreq = 0, minCount = 0 )
object |
Requires a UMI sample or UMI experiment object. |
name |
String. Name of the filter. Default is "default". |
minDepth |
Consensus depth to analyze. Default is 3. |
minCoverage |
Minimum coverage required for amplicons. Default is 1. |
minFreq |
Minimum variant allele frequency to keep. Default is 0. |
minCount |
Minimum variant allele count to keep. Default is 3. |
A UMI sample or UMI experiment object.
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'simsen',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen)
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'simsen',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen)
You can filter variants called with the the "callVariants" function based on adjusted p-value, minimum variant allele count and supply a list of assays and samples to plot.
filterVariants( object, p.adjust = 0.2, minVarCount = 5, amplicons = NULL, samples = NULL )
filterVariants( object, p.adjust = 0.2, minVarCount = 5, amplicons = NULL, samples = NULL )
object |
A UMIexperiment object |
p.adjust |
Numeric. Adjusted p value (FDR). Default is 0.2. |
minVarCount |
Integer. Minimum variant allele count. Default is 5. |
amplicons |
NULL or list of assays to plot. NULL uses all. |
samples |
NULL or list of samples to plot. NULL uses all. |
A UMIexperiment object with filtered variants. Can be used to generate VCF files.
callVariants
on how to call variants.
## Not run: library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- filterUmiObject(simsen) simsen <- callVariants(simsen, computePrior = FALSE) simsen <- filterVariants(simsen, p.adjust = 0.05) ## End(Not run)
## Not run: library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- filterUmiObject(simsen) simsen <- callVariants(simsen, computePrior = FALSE) simsen <- filterVariants(simsen, p.adjust = 0.05) ## End(Not run)
Find consensus reads A function to analyze consensus read tables generated with parseBamFiles or a UMIexperiment object containing reads.
findConsensusReads( object, consDepth = 0, groupBy = c("none", "sample", "position", "both"), pattern = NULL )
findConsensusReads( object, consDepth = 0, groupBy = c("none", "sample", "position", "both"), pattern = NULL )
object |
Either a tibble generated with parseBamFiles or a UMIexperiment object |
consDepth |
Minimum consensus depth to keep. Default is 0. |
groupBy |
Should data be grouped by position, sample, both or not at all. |
pattern |
Regular expression |
A data table
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main, importBam = TRUE) reads <- findConsensusReads(simsen) reads
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main, importBam = TRUE) reads <- findConsensusReads(simsen) reads
Generate VCF file from UMI sample or UMI experiment object
generateVCF(object, outDir = getwd(), outFile, printAll = FALSE)
generateVCF(object, outDir = getwd(), outFile, printAll = FALSE)
object |
Requires a UMI sample or UMI experiment object |
outDir |
String. Output directory, defaults to working directory. |
outFile |
String. Name of the output file |
printAll |
Logical. Should all or only trusted variant be printed? |
A VCF file
## Not run: library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- filterUmiObject(simsen) generateVCF(simsen,'simsen.vcf', printAll = FALSE, save = FALSE) ## End(Not run)
## Not run: library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- filterUmiObject(simsen) generateVCF(simsen,'simsen.vcf', printAll = FALSE, save = FALSE) ## End(Not run)
Method for retrieving filtered data
getFilteredData( object, name = "default", save = FALSE, outDir = getwd(), fileName = NULL, delim = ";" )
getFilteredData( object, name = "default", save = FALSE, outDir = getwd(), fileName = NULL, delim = ";" )
object |
Requires a UMI sample or UMI experiment object. |
name |
String. Name of the filter. Default is "default". |
save |
Logical, should data be saved as csv file? Default is FALSE. |
outDir |
Output directory |
fileName |
Filename to be used, default is the same as 'name' |
delim |
Character string denoting delimiter to be used, default is ';'. |
A filtered consensus table, as a tibble.
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'simsen',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen) myfilter <- getFilteredData(simsen) myfilter
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'simsen',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen) myfilter <- getFilteredData(simsen) myfilter
Retrieve meta data by name.
getMetaData(object, attributeName)
getMetaData(object, attributeName)
object |
R object from which to get meta data. |
attributeName |
Name of the meta data attribute. |
Metadata
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer") simsen <- importDesign(object = simsen,file = metaData) design <- getMetaData(object = simsen, attributeName = "design")
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer") simsen <- importDesign(object = simsen,file = metaData) design <- getMetaData(object = simsen, attributeName = "design")
Import bed file
importBedFile(path)
importBedFile(path)
path |
path to bed file |
A table containing genome positions
library(umiAnalyzer) bed_dir <- system.file("extdata", "simple.bed", package = "umiAnalyzer") bed <- importBedFile(path = bed_dir)
library(umiAnalyzer) bed_dir <- system.file("extdata", "simple.bed", package = "umiAnalyzer") bed <- importBedFile(path = bed_dir)
Import experimental design meta data such as replicates, treatments, categorical variables.
importDesign(object, file, delim = NULL)
importDesign(object, file, delim = NULL)
object |
UMI.experiment to which to add metadata |
file |
File containing meta data |
delim |
Column separator. Default is NULL (automatically determine delimiter) |
A UMIexperiment object
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer") simsen <- importDesign(object = simsen,file = metaData) # Retrieve meta data design <- getMetaData(object = simsen, attributeName = "design") design
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer") simsen <- importDesign(object = simsen,file = metaData) # Retrieve meta data design <- getMetaData(object = simsen, attributeName = "design") design
Merge assays together by name. Requires a name of the new assay and a list of assays that will be merged.
mergeAssays(object, name, assay.list)
mergeAssays(object, name, assay.list)
object |
A UMIexperiment object |
name |
Name of the new assay |
assay.list |
List of assays to merge |
merged consensus data
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- mergeAssays(object = simsen,name = "new",assay.list = c("PIK3CA_123", "PIK3CA_234"))
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- mergeAssays(object = simsen,name = "new",assay.list = c("PIK3CA_123", "PIK3CA_234"))
Function to parse bam files
parseBamFiles(mainDir, sampleNames = NULL, consDepth = 0, as.shiny = FALSE)
parseBamFiles(mainDir, sampleNames = NULL, consDepth = 0, as.shiny = FALSE)
mainDir |
Directory containing UMIErrorCorrect output folders. |
sampleNames |
A list of sample names. |
consDepth |
Only retain consensus reads of at least cons.depth. Default is 0. |
as.shiny |
Set to TRUE if run within a shiny::withProgress environment |
A data table
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) reads <- parseBamFiles(main, consDepth = 10)
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) reads <- parseBamFiles(main, consDepth = 10)
Visualize the UMI count for each selected assay and sample for a given consensus depth. This is useful to detect differences in coverage, especially for multiplexed assays.
QCplot( object, group.by = "sample", plotDepth = 3, assays = NULL, samples = NULL, theme = "classic", option = "viridis", direction = "default", toggle_mean = TRUE, center = "mean", line_col = "blue", angle = 0, plotly = FALSE )
QCplot( object, group.by = "sample", plotDepth = 3, assays = NULL, samples = NULL, theme = "classic", option = "viridis", direction = "default", toggle_mean = TRUE, center = "mean", line_col = "blue", angle = 0, plotly = FALSE )
object |
Requires a UMI sample or UMI experiment object |
group.by |
String. Which variable should be used as a factor on the x-axis. Default is sample |
plotDepth |
Which consensus depth to plot |
assays |
(Optional) user-supplied list of assays to plot. Default is all. |
samples |
(Optional) user-supplied list of samples to plot. Default is all. |
theme |
ggplot theme to use. |
option |
Color palette to use, either ggplot default or viridis colors. |
direction |
If viridis colors are used, choose orientation of color scale. |
toggle_mean |
Show mean or median |
center |
Choose mean or median |
line_col |
Choose color for mean/median line |
angle |
Angle of labels on x-axis. |
plotly |
Should plotly be used for rendering? |
A ggplot object
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) depth_plot <- QCplot(simsen)
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) depth_plot <- QCplot(simsen)
Function to run the umiVisualizer shiny app
runUmiVisualizer()
runUmiVisualizer()
Opens the umiVisualizer app
## Not run: library(umiAnalyzer) runUmiVisualizer() ## End(Not run)
## Not run: library(umiAnalyzer) runUmiVisualizer() ## End(Not run)
If save is set to TRUE data will be written to a csv file otherwise consensus data will be returned as a tibble.
saveConsData( object, save = FALSE, fileName = "consensus_data.csv", outDir = getwd(), delim = ";" )
saveConsData( object, save = FALSE, fileName = "consensus_data.csv", outDir = getwd(), delim = ";" )
object |
UMIexperiment object |
save |
Logical. Should data be saved to file? Default is FALSE. |
fileName |
String. Name of the file to be saved. Default is 'consensus_data.csv' |
outDir |
output directory, defaults to working directory |
delim |
Single character string, either ';' or ',' or tab |
A data table
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) example <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) consensus_data <- saveConsData(object = example) consensus_data
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) example <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) consensus_data <- saveConsData(object = example) consensus_data
UMIexperiment data generated with SiMSen-Seq
An object of class "UMIexperiment"
Function for plotting time series or other meta data. Uses facet wrap to display user-provided categorical variables.
timeSeriesGrid( object, filter.name = "default", cut.off = 5, min.count = 0, min.vaf = 0, amplicons = NULL, samples = NULL, x_variable = NULL, y_variable = "Max Non-ref Allele Frequency", columns = "Sample Name", rows = "Name", color_by = "Name", fdr = 0.05, use.caller = TRUE, bed_positions = NULL )
timeSeriesGrid( object, filter.name = "default", cut.off = 5, min.count = 0, min.vaf = 0, amplicons = NULL, samples = NULL, x_variable = NULL, y_variable = "Max Non-ref Allele Frequency", columns = "Sample Name", rows = "Name", color_by = "Name", fdr = 0.05, use.caller = TRUE, bed_positions = NULL )
object |
A consensus data table |
filter.name |
"default" |
cut.off |
5 |
min.count |
0 |
min.vaf |
0 |
amplicons |
NULL |
samples |
NULL |
x_variable |
NULL |
y_variable |
"Max Non-ref Allele Frequency" |
columns |
"Sample Name" |
rows |
"Name" |
color_by |
"Name" |
fdr |
0.05 |
use.caller |
TRUE |
bed_positions |
NULL |
A ggplot object.
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- filterUmiObject(simsen) metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer") simsen <- importDesign(object = simsen,file = metaData) bed_dir <- system.file("extdata", "simple.bed", package = "umiAnalyzer") bed <- importBedFile(path = bed_dir) time_plot <- timeSeriesGrid(simsen, x_variable = "time", bed_positions = bed)
library(umiAnalyzer) main <- system.file("extdata", package = "umiAnalyzer") simsen <- createUmiExperiment(main) simsen <- filterUmiObject(simsen) metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer") simsen <- importDesign(object = simsen,file = metaData) bed_dir <- system.file("extdata", "simple.bed", package = "umiAnalyzer") bed <- importBedFile(path = bed_dir) time_plot <- timeSeriesGrid(simsen, x_variable = "time", bed_positions = bed)
Visualize the number detected UMI for each consensus depth cut-off. This may may helpful in choosing the right consensus depth for your analysis, by checking the number of reads still available for each assay and sample for your chosen cut-off.
UmiCountsPlot( object, amplicons = NULL, samples = NULL, theme = "classic", option = "viridis", direction = 1 )
UmiCountsPlot( object, amplicons = NULL, samples = NULL, theme = "classic", option = "viridis", direction = 1 )
object |
Requires a UMI sample or UMI experiment object |
amplicons |
(Optional) user-supplied list of assays to plot. Default is all. |
samples |
(Optional) user-supplied list of samples to plot. Default is all. |
theme |
Plotting theme, default is classic |
option |
Color palette. Default uses ggplot standard, otherwise viridis options. |
direction |
If using viridis colors should the scale be inverted or default? |
A UMIexperiment object
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen) count_plot <- UmiCountsPlot(simsen)
library(umiAnalyzer) main = system.file('extdata', package = 'umiAnalyzer') samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE) simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples) simsen <- filterUmiObject(simsen) count_plot <- UmiCountsPlot(simsen)
The UMIexperiment is the core data object, storing all data and relevant analysis data associated with your experiment. Each object has number of slots storing raw data, graphs and processed data.
An object of class UMIexperiment
name
Optional project name for record keeping.
cons.data
The raw consensus data supplied by the user.
summary.data
Summary data from UMIErrorCorrect
raw.error
Cons0 error profile
reads
Consensus reads imported using the parseBamFiles function.
meta.data
Sample data optionally supplied by the user.
filters
A list of filtered cons.data, which can be accessed separately.
plots
A list of generated plots.
variants
Consensus table generated with the umiAnalyzer variant caller.
merged.data
Data generated using the mergeTechnicalReplicates function.
UMIsample class
An object of class UMIsample
name
Sample name
cons.data
Raw consensus data
summary.data
Summary data from UMIErrorCorrect
reads
Consensus reads imported from a bam file.